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Nonexistence of Chebyshev-Type Quadratures 
on Infinite Intervals* 

By Walter Gautschi 

Dedicated to D. H. Lehmer on his 70th birthday 

Abstract. Quadrature rules on semi-infinite and infinite intervals are considered 

involving weight functions of the Laguerre and Hermite type. It is shown that 

such quadrature rules cannot have equal coefficients and real nodes unless the 

algebraic degree of accuracy is severely limited. 

1. Introduction. Given a nonnegative weight function w(x) on the interval 

(a, b), with finite moments 

b 
mk = xkw(x)dx, k = 0, 1, 2, , m0 > 0 

a 

a quadrature rule of the form 

b MO n 
(1.1) f(X)w(x)dx n E f(xn)) + R (f) 

is called a Chebyshev quadrature formula if the nodes x(n) are mutually distinct 

and located in (a, b), and if (1.1) has polynomial degree of accuracy n, i.e., 

Rn(f) = 0 whenever f is a polynomial of degree < n. In the following we are 

going to relax these requirements in two respects: Firstly, we shall drop the re- 

quirement that the nodes be distinct, or even contained in (a, b), assuming merely 

that all be real. Secondly, we shall allow for polynomial degree of accuracy < n. 

Since we are interested in questions of nonexistence, both modifications only 

strengthen our results. We shall refer to quadrature rules (1.1), under these relaxed 

conditions, as Chebyshev-type quadrature formulas. 

We focus our attention on two special cases of (1.1): the Chebyshev-Laguerre 

formula 

Jx.2)%e?xf(x)dx _ f(xk n R(f), > 1, 
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and the Chebyshev-Hermite formula 
00 2p (( 

(1.3) f e-x f(x)dx = S f<k) + R(f). 

In 1955, H. E. Salzer [5] first observed (by computation) that a Chebyshev formula 
(1.2), in the strict sense, for a = 0, exists for n = 1 and n = 2, but does not 
exist for 3 A n < 10. He found similarly that (1.3) exists for n = 1, 2 and 3, 
but not for 4 < n < 10. Shortly thereafter, V. I. Krylov [4] proved that in fact 
(1.2) (with ae = 0) and (1.3) do not exist for any n > 3 and n > 4, respectively. 
This was proved again later on, independently, by H. S. Wilf [6] and L. Gatteschi 
[3]. We shall prove below analogous results for Chebyshev-type quadratures. In 
particular, we show that formulas (1.2) and (1.3) with polynomial degrees of ac- 
curacy Pn > rn-n', X >0, 1/2< -y < 1, as n -* o, cannot exist. 

Both Krylov's and Gatteschi's proofs are based on an inequality of Bernstein, 
which was used by Bernstein to settle the existence of Chebyshev quadratures in 
the classical case w(x) = 1 on [- 1, 1]. We shall continue using Bernstein's method, 
but simplify its application and also establish its validity in the case of nodes not 
necessarily distinct. 

2. Bernstein's Inequalities. The lemmas in this section are slight extensions 
or modifications of results due to S. Bernstein [2], which in turn, according to 
Bernstein [loc. cit., p. 180], are "but more or less immediate applications or mod- 
ifications of a proposition due to Chebyshev". Our extension is to arbitrary 
weight functions (which is immediate), and our modification is prompted by our 
reluctance to assume mutually distinct nodes. 

Let m) and X(m) be the abscissas and weights of the m-point Gaussian 
quadrature rule 

(2.1) f f(x)w(x)dx = E X fm)f(m)) + Rm(f) (m < (m) < . < (m 
a r=irr1 

Thus, Rm (f) = 0 for all polynomials of degree < 2m - 1. The abscissas (m) are 
the zeros of the mth degree orthogonal polynomial associated with the weight func- 
tion w(x), while the weights X(m) are the corresponding Christoffel numbers. 

LEMMA 2.1. If the Chebyshev-type quadrature formula (1.1) has polynomial 
degree of accuracy 2m - 1, m < n, then either 

(2.2) xrn) =r) (nr-times), X(M)(m= mon)nr, r = 1, 2, ... , m, 

where nr > 1 are integers summing up to n, or 

(2.3) x(n) > tm 

for at least one value of k, 1 < k < n. The same statement holds true with (2.3) 
replaced by 
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(2.3') X(n)< &) 

The proof utilizes the polynomial p(x) = p(x)/(x- cm)), where Pm is the 
mth degree orthogonal polynomial associated with the weight function w(x). We 
have, on the one hand f bp(x)w(x)dx = 0, and on the other, by assumption, 

(2.4) E P(Xn)) = 0. 
k= I1 

There are the following alternatives: 
(i) All x(")? (m). Since p(x) < 0 for x < ?(m), and p(x) = O only 

for x = tm), r = 1, 2, , m, it follows from (2.4) that all x(n) must be placed 

at Gaussian nodes &$m), that is, 

r m) (nr-times), r= 1,2, , m, 

where nr > 0 are integers with n1 + n2 + * + nm = n. The quadrature rule 

(1.1) then becomes 

a f(x)w(x)dx =- n flrf(rm)) + R(f). 

Since it has polynomial degree of accuracy 2m - 1, and since the Gaussian quad- 
rature rule (2.1) is unique, we conclude (2.2), and in particular, nr > 1 for all r, 
by virtue of X(m) > 0. This proves the first alternative (2.2). 

(ii) At least one x(n) > Om) This gives the second alternative (2.3). 
The statement concerning (2.2) and (2.3') follows similarly by using p(x) 

2 
(X)I(X - &)). 

LEMMA 2.2. If the Chebyshev-type quadrature formula (1.1) has polynomial 
degree of accuracy 2m - 2, then 

(2.5) U(m))mo/n < X(m) and T(tm))mOIn < X(m), 

where (Q(m)) and T(tm)) are the number of nodes x(n) with x(n) > t(m) 

and x(n) < &mm), respectively. 
The proof of Bernstein, utilizing p(x) = p 2(x)(x - t(m))-2 [PI(t(m))] 2 

r = 1 or r = m, applies essentially unchanged. 

LEMMA 2.3. If the Chebyshev-type quadrature formula (1.1) has polynomial 
degree of accuracy 2m - 1, m < n, then 

(2.6) mO/n < min {X(m) X(m )} 

Proof By Lemma 2.1 we have either (2.2), or else both (2.3) and (2.3'). 
In the first case, (2.6) results from putting r = 1 and r = m in (2.2) and noting 
that nr > 1. In the second case, (2.6) is a consequence of (2.5). 

3. Nonexistence of Chebyshev-Laguerre Type Formulas. 
THEOREM 3.1. A Chebyshev-type quadrature formula (1.2) having polynomial 
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degree of accuracy n - s, s > 0, does not exist if 

(3.1) n > s + 2 {a + 5 +( 1)( 5 4s)} and n - s (even) > 4, 

or if 

(3.2) n > s - + {I a ( ( + 5 + +l)(+1+4s) and n - s (odd) > 3. 

Remark. For n - s = 2 it is easily shown that Chebyshev-type formulas 
(1.2) do indeed exist. The same, of course, is true if n - s = 1. 

Proof of Theorem 3.1. Let 7rO(x), 7r,(x), 
- * * denote the normalized Laguerre 

polynomials L(?)(x), L(O?)(x), , and &m) the zeros of 7rm, ordered decreasingly. 
The associated Christoffel numbers are 

Im-1 
(3.3) X(M) =21? 

r E / 17rk(tr(m)]2 

V. I. Krylov [4] showed that 

(3.4) m) >2m + a - (m > 2, > 1). 

Since 

7r = [W(a + 1)] - 1/2, r1(x) = [rF( + 2)] - L12(e 1 -x), 

it follows from (3.3) that 

X,(m) < I r(a + 1) 

7 r2+ [7rl((m))] 1 + [ ((m)a-(a + 1)] 2!/(a + 1) 

and thus from (3.4) that 

X(m) < R(a ?) , m>2. 
1 1 + 4(m - 1)2/(a + 1) 

We first consider the case where n - s is even. Let n - s = 2m, m > 2. 
By Bernstein's inequality (2.6) we have nonexistence of (1.2) if F(a + 1)/n > 
X(jm) hence, a fortiori, if 

1 1 
(3.5) -, m >2. 

n 1+4(m-1)2/(a?+1) 

Since n = 2m + s, the last inequality is equivalent to 

4m2 - (2a + 10)m + a + 5 - s(a + 1) > 0, 

and is satisfied if 

m > 4 + 5 + (a 1)( 5 4s)}, m > 2. 

Since m = (n - s)/2, this proves (3.1). 
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It remains to consider the case n - s odd, n - s = 2m -1, m > 2. Non- 
existence of (1.2) now results if (3.5) holds with n = 2m + s - 1, i.e., if 

4m2 - (2a + 1O)m + 2a + 6 - s(a + 1) > O, m > 2, 

or, in particular, if 

m > {a + 5 + +)(+1+4s)}, m > 2. 

Since m = (n - s + 1)/2, this gives (3.2), and the proof of Theorem 3.1 is com- 
pleted. 

COROLLARY. There is no sequence {Cn} of Chebyshev-type formulas (1.2), 

corresponding to a sequence S of integers n = n1, n1 - oo, such that Cn has 

polynomial degree of accuracy Pn > Trnt, T > O, ?h < -y < 1, for each n E S. 
Proof. Letting Pn = n - sn, we have sn A n - wrny, and (3.1), (3.2) 

are both satisfied for s = sn and n sufficiently large. 
We remark that (3.1) and (3.2) in the case a = 0 are sharp for s = 0 and 

s = 1, giving the correct bounds n > 3 and n > 4, respectively, but are not quite 
sharp for s > 2. If s = 2, the inequalities (3.1), (3.2) yield n = 5 or n > 7. In 
reality, n > 5, as can be seen from Bernstein's inequality by verifying n- 1 > X(2) 
for n = 6. For s = 3 we obtain n > 8, while in reality n > 6. The latter fol- 
lows from Bernstein's inequality when n = 6, and from computations performed 
in [1] when n = 7. 

4. Nonexistence of Chebyshev-Hermite Type Formulas. We call (1.3) a 
symmetric Chebyshev-type quadrature formula if the nodes x(n) are located sym- k 

metrically with respect to the origin. Symmetric formulas are trivially exact for 
odd functions. We can assume therefore that the polynomial degree of accuracy 
of a symmetric formula is odd. 

THEOREM 4.1. A symmetric Chebyshev-type quadrature formula (1.3) having 

polynomial degree of accuracy 2[n/2] -2s + 1, s > 0, does not exist if 

s = 0 and n > 4, s =1 and n > 8, 

(4.1) (2(s + 1 + ), n even, 
s>1 and n> { 

/2s + 3 + ? 4s + 2, n odd. 

Proof. The normalized Hermite polynomials 7r0(x), 7r1(x), ... can be ex- 

pressed in terms of Laguerre polynomials by means of 

ir~(x - 1(n/2 ? 1) 1/2 L(-112) (X2), nev, 7T n(x) = 
}((n + 1)/2) n/2 

n even, 

(4.2) 
_ F=((n + 1)/2) 1/2 

7r (X) = A(~l 12) (X2), n odd. nrx F'(n/2 ? 1) (n -1)/2 
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The largest zero (m) of 7Tm, by (3.4) and (4.2), thus satisfies 

()[(m)]2 > m - 3/2 for m > 4, 

[(m)I2 = m - 3/2 for m = 2 and 3. 

Since 

0= 1/4 7T,(x) = 21 2r 114X, 72(X) = 2-1/2-1/4(2X2 - 1), 

we obtain for the corresponding Christoffel number, using again (3.3), 

X(m) 1 2 2V\fi2 
1 irO 

? 
[2r1((m))]2 + [72(m))12 2 + 4[m12 2 + (2[24 2 

1) 

and thus, from (4.3), 

Xt(M) < 
N/r 

" , m>4, 1 2[m-?+(m-2)2] 

1(m = , m = 2 and 3. 1 2[m - 1 + (m - 2)21 

We first consider the case when n is even, n = 2v. Since we are assuming poly- 
nomial degree of accuracy 2[n/2] - 2s + 1 = 2v - 2s + 1, we have m = v - s + 1 
in Bernstein's inequality (2.6). Nonexistence of (1.3) thus follows in either of the 
following two cases: 

1 > _ 1 and v>s + 3, 
2v 2[v-s+(v-s- 1)21 

- > 
1 and v = s + 1 or s + 2. 

2v 2[v-s+(v-s-1)2] 

The first case is equivalent to 

v2 -2(s+1)V+S2+s+1>0 and v>s+3, 

and is realized if 

(4.4) n > 2(s + 1 + \/s), n(even) > 2s + 6. 

The second case occurs if 

(4.5) n > 2(s + 1 + ? ), n = 2s + 2 or 2s + 4. 

Now n = 2s + 2 in (4.5) implies 0 > 2\S, which is impossible, while n = 2s + 4 
implies s = 0, hence n = 4. Putting in turn s = 0 and s = 1 in (4.4) gives n(even) 
> 6 and n(even) > 8, respectively, while for s > 2 we get n(even) >2(s + 1 +Ni). 
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Since in all these cases a symmetric formula (1.3) does not exist, Theorem 4.1 is 
proved for all even n > 4. 

Consider now the case of odd n, n = 2v + 1. The degree of accuracy still being 
2v - 2s + 1, we can again use m = v - s + 1 in Bernstein's inequality and infer 
nonexistence of (1.3) in either of the following two cases: 

1 1 
2v + I > 1 and v>s?+3 

2v?+ 1 2[v - s + (v - s-1)2] 

1 1 
2v?I> and vI=s+ 1 or s+2. 

2[v - s + (v - s -1)2] 

As before one sees that these cases hold if 

n > 2s + 3 + , n(odd) > 2s + 7 

and 

n>2s?3 +4s+?2 n=2s+3 or 2s+5, 

respectively. The latter is possible only if s= 0, giving n = 5. Putting s 0 in the 
former gives n(odd) > 7, while for s > 1 we get n(odd) > 2s + 3 + 4s 2 
This proves Theorem 4.1 for all odd n > 5. 

COROLLARY. There is no sequence {Cn} of symmetric Chebyshev-type formn- 
ulas (1.3), corresponding to a sequence S of integers n = n n, n- C0, such that 

Cn has polynomial degree of accuracy Pn > Tny, Tr > 0,? 2< -, < 1, for each n E S. 
We remark that Theorem 4.1 is sharp for s = 0, as follows from Krylov's 

result, and also for s = 1, 2 and 3, as can be seen from calculations performed in [1]. 
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